Mater 5707 Prong 2023
Matching theory Snippet 3: (Bondy-Murty §5.5, Schnijver §3.5)

Given $G=\left(X_{\cdot} \cdot Y, E\right)$ bipartite and edge weights $w: E \rightarrow \mathbb{R}_{\geq 0}$,
want to find a matching $M \subset E$
that maximizes total weight $\omega(M):=\sum_{e \in M} w(e)$
If will not always have \max size $|M|=\nu(G) D_{0}^{D}$ EXAMPLE

weight: 4
has

beating all of the matchings of size $4=v(G)$:

5
7

DEFINTIIN: Call a matching MCE extreme if it has max weight $w(M)$ among all matching in G of the same size.

EXAMPLE

is extreme with $|M|=3$ edges
weight:

Kuhn 1955 gave a generalization of the Hungarian algorithm to find one extreme matching M_{i} of each one $\left|M_{i}\right|=i$ for $i=0,1,2, \ldots, \nu(M)$:

- Direct G via M_{i} to obtain digraph D_{i} as before:
$x \rightarrow y \operatorname{not} \operatorname{in} M_{i}$
$x<y$ in M_{i}
- Now put "length"" on the arcs of $D_{i}:\left\{\begin{array}{l}x \xrightarrow{-\omega(e)} y \text { not in } M \\ x \xrightarrow{+\omega(e)} y \text { in } M\end{array}\right.$
- Search for directed paths P in D_{i} from any unmatched x in X to any unmatched y in Y, but of minimum total length among al such paths.
- If none exist, $\left|M_{i}\right|=v(M)$, so stop. If one exists, augment M_{i} along P to dotain $M_{i+1 .}$
example
M- unmatched vertices circled

$G, \omega \mid M_{0}=\phi$
weight: 0

$$
M_{1}
$$

M_{2}

M_{3}
9
max weight matching is M_{3}

Why does it work as claimed?
PROPOSTII先: If M_{i} was extreme, then so is M_{i+1}.
proof: For $i=0, M_{0}=\phi$ is extreme.
Inductively, let M_{i+1}^{\prime} be any extreme matching win it edges. Want to show that

$$
w\left(M_{i+1}\right) \geqslant w\left(M_{i+1}^{\prime}\right)
$$

We augmented M_{i} along a path P_{i} to obtain M_{i+1}.
Note $\omega\left(M_{i+1}\right)=\omega\left(M_{i}\right)-l\left(P_{i}\right)$

We know that $M_{i} \cup M_{i+1}^{\prime}$ contains a conneded component which is an $M_{i}{ }^{\text {-augmenting path } P_{i}^{\prime} \text {; use } 6 \text { co create }}$ an M_{i}^{\prime} matching with i edges such that M_{i}^{\prime} augmented along P_{i}^{\prime} goes M_{i+1}^{\prime}.
Note again $\omega\left(M_{i+1}^{\prime}\right)=\omega\left(M_{i}^{\prime}\right)-l\left(P_{i}^{\prime}\right)$
Byconstmetion in Kuhn's algorithm,

$$
l\left(P_{i}^{\prime}\right) \geq l\left(P_{i}\right)
$$

Hence

$$
\begin{aligned}
& w\left(M_{i+1}^{\prime}\right)=w\left(M_{i}^{\prime}\right)-l\left(P_{i}^{\prime}\right) \\
& \leq w\left(M_{i}^{\prime}\right)-l\left(P_{i}\right) \\
& \text { since } M_{i} \text { is } \\
& \text { extreme } \\
& \leq w\left(M_{i}\right)-l\left(P_{i}\right) \\
& =\omega\left(M_{i+1}\right) \text { W } \\
& \text { (along matching } \\
& \text { with : edges) }
\end{aligned}
$$

Remaining issue:
Can one quickly find directed paths P of minimum length incthe digraph D : when there are negative edge lengths present ??

A problem: cycle C with
$l(C)<0$!

If there are no such directed cycles C with total length $l(C)<0$,
then J an dovious algorithm (Bellman-Ford; Schnijver $\delta 1.3$)
to find min length directed paths from $x \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow y$.

LEMMA: For the digraphs D_{i} based on M_{i} in Kuhn's algorithm, there are no cycles C with $l(C)<0$.
proof: If we had such a cycle C, itwould like this :

$$
X \quad Y
$$

$C M_{i}^{\text {ex d }}$

$$
\begin{gathered}
w\left(M_{i}^{\prime}\right)=w\left(M_{i}\right)-l(C) \\
>\omega\left(M_{i}\right) \\
\text { Contradiction. }
\end{gathered}
$$

